高三数学基础夯实8:

导 数

1	导数的概念	
т.	マンタスロンがいし	,

- (1)函数 y=f(x)在 $x=x_0$ 处的导数,即 $f'(x_0)=\lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to 0}$
- (2)导数的几何意义: 曲线 y=f(x)上点 $x=x_0$ 处的切线方程为

2. 导数公式及运算法则

(1)基本初等函数的导数公式

原函数	导函数	原函数	导函数
f(x)=c(c 为常数)		$f(x) = a^x$	
$f(x) = x^n (n \in \mathbf{Q})$		$f(x) = e^x$	
$f(x) = \sin x$		$f(x) = \log_a x$	
$f(x) = \cos x$		$f(x) = \ln x$	

(2)导数的运算法则

$$\bigcirc [f(x)\pm g(x)]' =$$

$$2[f(x)\cdot g(x)]' =$$

$$\Im \left[\frac{f(x)}{g(x)} \right]' =$$

- 3. 奇函数的导数是_____函数,偶函数的导数是_____函数,周期函数的导数还是_____函数。
- 4. 函数 *f*(*x*)在区间(*a*, *b*)上递增,则 *f*′(*x*)≥0, "*f*′(*x*)>0 在(*a*, *b*)上成立"是"*f*(*x*)在(*a*, *b*)上单调递增"的_____条件。
- 5. 对于可导函数 f(x)," $f'(x_0)=0$ "是"函数 f(x)在 $x=x_0$ 处有极值"的_____条件。
 - $6. a \ge f(x)$ 在 $x \in D$ 上恒成立,则 $a \ge f(x)$ _____; $a \le f(x)$ 在 $x \in D$ 上恒成立,则 $a \le f(x)$ _____。 $a \ge f(x)$ 在 $x \in D$ 上能成立,则 $a \ge f(x)$; $a \le f(x)$ 在 $x \in D$ 上能成立,则 $a \le f(x)$ 。

7.含全称、存在量词不等式恒成立问题的方法

- 1. 存在 $x_1 \in A$,任意 $x_2 \in B$ 使 $f(x_1) \geqslant g(x_2)$ 成立,则 $f(x) \geqslant g(x)$ 。
- 2. 任意 $x_1 \in A$, 存在 $x_2 \in B$, 使 $f(x_1) \geqslant g(x_2)$ 成立,则 f(x) $\geqslant g(x)$ 。
- 3. 任意 $x_1 \in A$, $x_2 \in B$, 使 $f(x_1) \ge g(x_2)$, 则 f(x) $\ge g(x)$ 。
- 4. 存在 $x_1 \in A$, $x_2 \in B$, 使 $f(x_1) \leq g(x_2)$, 则 f(x)____ $\leq g(x)$ _____ \circ